OFFeDi - Optoelektronischer Frequenzsynthesizer mit Femtosekunden-Diodenlaser

?berblick

Jitterarme Signalquellen werden h?ufig für Objekterkennung, Navigations- und Ultra-Hochgeschwindigkeits-Datenkommunikationssysteme eingesetzt. Der Jitter der Signalquellen wird von der Referenzsignalquelle dominiert, die ein Oszillator mit Surface-Acoustic-Wave-Resonator (SAW-Resonator) oder mit Quarzresonator ist. Diese rauscharmen Referenzoszillatoren sind derzeit Stand der Technik für Kommunikationssysteme. Jedoch k?nnen mit einem Mode Locked Laser (MLL) erzeugte optische Impulsfolgen einen um 2-3 Gr??enordnungen kleineren Jitter erreichen. Es wurde auch gezeigt [4], dass durch die Verwendung eines optoelektronischen Phasendetektors und einer Phasenregelschleife ein Mikrowellenoszillator an einen MLL gekoppelt werden kann. Solche opto-elektronischen Phasenregelkreise (OEPLL) haben ein gro?es Potenzial für eine neue Klasse von Frequenzsynthesizern mit extrem niedrigem Jitter.

Phasenrauschvergleich verschiedener Technologien

Die gr??ten Nachteile dieser OEPLLs sind ihre gro?en und teuren optischen Komponenten. Elektronisch-photonisch integrierte Schaltungen auf Basis der Silizium-Photonik-Technologie bieten das Potenzial für eine extreme Miniaturisierung dieser optischen Komponenten sowie die Integration von Optik und Elektronik und beides bei geringen Kosten.

Ziel dieses Projekts ist die Implementierung eines monolithisch-integrierten OEPLL mit einem extrem niedrigen Phasenrauschen. In Zusammenarbeit mit unseren Projektpartnern an der Ruhr-Universit?t Bochum entwickeln wir die n?chste Generation von jitterarmen Mikrowellensignalquellen. Diese Art von Signalquelle verwendet eine PLL, die die optische Pulsfolge eines MLLs als Referenz verwendet. Um die Vorteile des Referenzsignals im optischen Bereich voll auszusch?pfen, erfolgt die Phasendetektion elektrooptisch mit einem Mach-Zehnder-Modulator (MZM).

Blockdiagramm des optoelektronischen Frequenzsynthesizers

In der ersten Phase wird das Gesamtsystem mit modularen Komponenten realisiert. In der zweiten Phase werden der MZM und die Elektronik in einem einzigen Siliziumchip integriert. Die Arbeit wird von theoretischen Untersuchungen begleitet, die durch Messungen validiert werden.

Ziel des Projekts ist, dass der additive Jitter des OEPLL kleiner als der Referenz-MLL-Jitter ist. Das Mikrowellensignal h?tte damit einen In-Band Jitter, der herk?mmliche elektronische PLLs bei Weitem übertrifft.

References:

[1] Kim et al, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Optics letters, vol. 36, no. 22, pp. 4443-4445, 2011.

[2] “Ultra Low Phase Noise Oven Controlled Crystal Oscillator,” Vectron, Datasheet OX-305.

[3] “Voltage Controlled SAW Oscillator Surface Mount Model,” Synergy Microwave, Datasheet HFSO1000-5.

[4] Jung et al, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Optics letters, vol. 37, no. 14, pp. 2958-2960, 2012

Die wesentliche Zielsetzung des Projektantrags ist die Untersuchung von Konzepten für extrem phasenrauscharme, opto-elektronische Phasenregelkreise, bei denen das Ausgangssignal über einen weiten Frequenzbereich (mehr als eine Oktave) kontinuierlich verstimmbar ist, und die mit kompakten Femtosekunden-Diodenlasern als Referenzoszillatoren arbeiten. Weitere Zielsetzungen sind, opto-elektronische Phasendetektor-Prinzipien unter Verwendung von verfügbaren Komponenten aus der Kommunikationstechnik zu untersuchen und den opto-elektronischen Frequenzsynthesizer mit diesen Phasendetektorprinzipien und mit Siliziumphotonik-Technologie weitaus kompakter und kosteneffizienter als bisher zu realisieren. Darüber hinaus soll erstmals ein mathematisches Modell von opto-elektronischen Integer-N und Fractional-N-Phasenregelkreisen mit Femtosekundenlasern erstellt werden, das es erlaubt, dynamisches und statisches Regelverhalten, Phasenrauschen, Stabilit?t und Erzeugung von St?rfrequenzen ("spurios frequencies") zu berechnen.

DFG-Verfahren Sachbeihilfen

Antragsteller Professor Dr. Martin Hofmann; Professor Dr.-Ing. Christoph Scheytt

Detailinformationen

Projektleitung

contact-box image

Prof. Dr.-Ing. J. Christoph Scheytt

Schaltungstechnik (SCT) / Heinz Nixdorf Institut

Zur Person
contact-box image

Meysam Bahmanian

Schaltungstechnik (SCT) / Heinz Nixdorf Institut

Zur Person
contact-box image

Martin Hofmann

Ruhr-Universit?t Bochum

Kooperationspartner

Ruhr-Universit?t Bochum

Kooperationspartner

Zur Website

Kontakt

Wenn 必威体育 Fragen zu diesem Projekt haben, kontaktieren 必威体育 uns!

Meysam Bahmanian

Schaltungstechnik (SCT) / Heinz Nixdorf Institut

Wissenschaftlicher Mitarbeiter

contact-box image

Ergebnisse

https://doi.org/10.1117/12.2545780)


Femtosecond RMS timing jitter from 1 GHz InP on-chip mode-locked laser at 1550 nm. Conference on Lasers and Electro-Optics / Pacific Rim 2020, Sydney Australia, OSA Technical Digest (Optical Society of America, 2020), paper C4C_2

M. A. Alloush, A. Bassal, C. Brenner, M. C. Lo, R. Guzmán, L. Augustin, G. Carpintero, M. R. Hofmann

(必威体育he online unter https://doi.org/10.1117/12.2555946)


Ultra-Low Phase Noise Frequency Synthesis for THz Communications Using Optoelectronic PLLs. In: International 必威体育 on mobile THZ Systems (IWMTS), 2. - 3. Jul. 2020 IWMTS

cheytt, Christoph; Wrana, Dominik; Bahmanian, Meysam; Kallfass, Ingmar

(必威体育he online unter https://doi.org/10.1364/ol.415336)


Passive- and self-mode-locking based ultrashort pulse generation in monolithic diode laser at 1550 nm. SPIE Photonics West Digital Forum, 06.-11.03. 2021

M.A. Alloush, N. Kleemann, L. Braun , C. Brenner, M. Zander, W. Rehbein, M. Moehrle, M. R. Hofmann

(必威体育he online unter https://doi.org/10.1117/12.2583134)


RF Analysis of a Sub-GHz InP-Based 1550 nm Monolithic Mode-Locked Laser Chip. IEEE Photon. Technol. Lett. 33, 828 (2021)

M. A. Alloush, M. van Delden, A. Bassal, N. Kleemann, C. Brenner, M.-C. Lo, L. Augustin, R. Guzman, T. Musch, G. Carpintero, and M. R. Hofmann

(必威体育he online unter https://doi.org/10.1109/lpt.2021.3083096)